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2 dma

dma-package Dynamic model averaging

Description

This package implements dynamic Bayesian model averaging as described for continuous outcomes
in Raftery et al. (2010, Technometrics) and for binary outcomes in McCormick et al. (2011, Bio-
metrics).

Details

Package: dma
Type: Package
Version: 1.4-0
Date: 2018-10-4
License: GPL2

Author(s)

Tyler H. McCormick, Adrian Raftery, David Madigan, Sevvandi Kandanaarachchi [ctb], Hana Sev-
cikova [ctb]

Maintainer: Hana Sevcikova <hanas@uw.edu>

References

McCormick, T.M., Raftery, A.E., Madigan, D. and Burd, R.S. (2011) "Dynamic Logistic Regression
and Dynamic Model Averaging for Binary Classification." Biometrics, 66:1162-1173.

Raftery, A.E., Karny, M., and Ettler, P. (2010). Online Prediction Under Model Uncertainty Via
Dynamic Model Averaging: Application to a Cold Rolling Mill. Technometrics 52:52-66.

dma Dynamic model averaging for continuous outcomes

Description

Implemtent dynamic model averaging for continuous outcomes as described in Raftery, A.E., Karny,
M., and Ettler, P. (2010). Online Prediction Under Model Uncertainty Via Dynamic Model Averag-
ing: Application to a Cold Rolling Mill. Technometrics 52:52-66. Along with the values described
below, plot() creates a plot of the posterior model probabilities over time and model-averaged fitted
values and print() returns model matrix and posterior model probabilities. There are TT time points,
K models, and d total covariates.
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Usage

dma(x, y, models.which, lambda=0.99, gamma=0.99,
eps=.001/nrow(models.which), delay=0, initialperiod=200)

Arguments

x TTxd matrix of system inputs

y TT-vector of system outputs

models.which Kxd matrix, with 1 row per model and 1 col per variable indicating whether that
variable is in the model (the state theta is of dim (model.dim+1); the extra 1 for
the intercept)

lambda parameter forgetting factor

gamma flatterning parameter for model updating

eps regularization parameter for regularizing posterior model model probabilities
away from zero

delay When y_t is controlled, only y_t-delay-1 and before are available. This is de-
termined by the machine. Note that delay as defined here corresponds to (k-1)
in the Ettler et al (2007, MixSim) paper. Thus k=25 in the paper corresponds to
delay=24.

initialperiod length of initial period. Performance is summarized with and without the first
initialperiod samples.

Value

yhat.bymodel TTxK matrix whose tk element gives yhat for yt for model k

yhat.ma TT vector whose t element gives the model-averaged yhat for yt

pmp TTxK matrix whose tk element is the post prob of model k at t

thetahat KxTTx(nvar+1) array whose ktj element is the estimate of theta_j-1 for model k
at t

Vtheta KxTTx(nvar+1) array whose ktj element is the variance of theta_j-1 for model k
at t

thetahat.ma TTx(nvar+1) matrix whose tj element is the model-averaged estimate of theta_j-
1 at t

Vtheta.ma TTx(nvar+1) matrix whose tj element is the model-averaged variance of thetahat_j-
1 at t

mse.bymodel MSE for each model

mse.ma MSE of model-averaged prediction
mseinitialperiod.bymodel

MSE for each model excluding the first initialperiod samples
mseinitialperiod.ma

MSE of model averaging excluding the first initialperiod samples

model.forget forgetting factor for the model switching matrix
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Author(s)

Adrian Raftery, Tyler H. McCormick

References

Raftery, A.E., Karny, M., and Ettler, P. (2010). Online Prediction Under Model Uncertainty Via
Dynamic Model Averaging: Application to a Cold Rolling Mill. Technometrics 52:52-66.

Examples

#simulate some data to test
#first, static coefficients
coef<-c(1.8,3.4,-2,3,-2.8,3)
coefmat<-cbind(rep(coef[1],200),rep(coef[2],200),

rep(coef[3],200),rep(coef[4],200),
rep(coef[5],200),rep(coef[6],200))

#then, dynamic ones
coefmat<-cbind(coefmat,seq(1,2.45,length.out=nrow(coefmat)),

seq(-.75,-2.75,length.out=nrow(coefmat)),
c(rep(-1.5,nrow(coefmat)/2),rep(-.5,nrow(coefmat)/2)))

npar<-ncol(coefmat)-1
dat<-matrix(rnorm(200*(npar),0,1),200,(npar))
ydat<-rowSums((cbind(rep(1,nrow(dat)),dat))[1:100,]*coefmat[1:100,])
ydat<-c(ydat,rowSums((cbind(rep(1,nrow(dat)),dat)*coefmat)[-c(1:100),c(6:9)]))
mmat<-matrix(c(c(1,0,1,0,0,rep(1,(npar-7)),0,0),

c(rep(0,(npar-4)),rep(1,4)),rep(1,npar)),3,npar,byrow=TRUE)
dma.test<-dma(dat,ydat,mmat,lambda=.99,gamma=.99,initialperiod=20)
plot(dma.test)

logistic.dma Dynamic model averaging for binary outcomes

Description

Implements dynamic model averaging for continuous outcomes as described in McCormick et al.
(2011, Biometrics). It can be either performed for all data at once (using logistic.dma), or dy-
namically for one observation at a time (combining the remaining functions, see Example). Along
with the values described below, plot() creates a plot of the posterior model probabilities over time
and model-averaged fitted values (with smooth curve overlay) and print() returns model matrix and
posterior model probabilities. There are K candidate models, T time points, and d total covariates
(including the intercept).

Usage

logistic.dma(x, y, models.which, lambda = 0.99, alpha = 0.99,autotune = TRUE,
initmodelprobs = NULL, initialsamp = NULL)

logdma.init(x, y, models.which)
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logdma.predict(fit, newx)

logdma.update(fit, newx, newy, lambda = 0.99, autotune = TRUE)

logdma.average(fit, alpha = 0.99, initmodelprobs = NULL)

Arguments

x T by (d-1) matrix of observed covariates. Note that a column of 1’s is added
automatically for the intercept. In logdma.init, this matrix contains only the
training set.

y T vector of binary responses. In logdma.init, these correspond to the training
set only.

models.which K by (d-1) matrix defining models. A 1 indicates a covariate is included in a
particular model, a 0 if it is excluded. Model averaging is done over all modeld
specified in models.which.

lambda scalar forgetting factor with each model

alpha scalar forgetting factor for model averaging

autotune T/F indicates whether or not the automatic tuning procedure desribed in Mc-
Cormick et al. should be applied. Default is true.

initmodelprobs K vector of starting probabilities for model averaging. If null (default), then use
1/K for each model.

initialsamp scalar indicating how many observations to use for generating initial values. If
null (default), then use the first 10 percent of observations.

newx, newy Subset of x and y corresponding to new observations.

fit List with estimation results that are outputs of functions logdma.init, logdma.update
and logdma.average.

Details

The function logistic.dma is composed of three parts, which can be also used separately: First,
the model is trained with a subset of the data (function logdma.init), where the size of the training
set is determined by initialsamp. Note that arguments x and y in logdma.init should con-
tain the training subset only. Then, the estimation is updated with new observations (function
logdma.update). Lastly, a dynamic model averaging is performed on the final estimates (function
logdma.average). The updating, averaging and in addition predicting (logdma.predict) can be
performed dynamically for one observation at a time, see Example below.

Value

Functions logistic.dma and logdma.average return an object of class logistic.dma. Functions
logdma.init and logdma.update return a list with estimation results which is a subset of the
logistic.dma object. It has the following components:

x T by (d-1) matrix of covariates



6 logistic.dma

y T by 1 vector of binary responses

models.which K by (d-1) matrix of candidate models

lambda scalar, tuning factor within models

alpha scalar, tuning factor for model averaging

autotune T/F, indicator of whether or not to use autotuning algorithm

alpha.used T vector of alpha values used

theta K by T by d array of dynamic logistic regression estimates for each model

vartheta K by T by d array of dynamic logistic regression variances for each model

pmp K by T array of posterior model probabilities

yhatdma T vector of model-averaged predictions

yhatmodel K by T vector of fitted values for each model

Function logdma.predict returns a matrix with predictions corresponding to the newx covariates.

Author(s)

Tyler H. McCormick, David Madigan, Adrian Raftery

Sevvandi Kandanaarachchi and Hana Sevcikova implemented the "streaming" functionality, i.e.
the original function was decomposed into standalone parts that can be used separately for one
observation at a time.

References

McCormick, T.M., Raftery, A.E., Madigan, D. and Burd, R.S. (2011) "Dynamic Logistic Regression
and Dynamic Model Averaging for Binary Classification." Biometrics, 66:1162-1173.

Examples

# simulate some data to test
# first, static coefficients
coef <- c(.08,-.4,-.1)
coefmat <- cbind(rep(coef[1],200),rep(coef[2],200),rep(coef[3],200))
# then, dynamic ones
coefmat <- cbind(coefmat,seq(1,.45,length.out=nrow(coefmat)),

seq(-.75,-.15,length.out=nrow(coefmat)),
c(rep(-1.5,nrow(coefmat)/2),rep(-.5,nrow(coefmat)/2)))

npar <- ncol(coefmat)-1

# simulate data
set.seed(1234)
dat <- matrix(rnorm(200*(npar),0,1),200,(npar))
ydat <- exp(rowSums((cbind(rep(1,nrow(dat)),dat))[1:100,]*coefmat[1:100,]))/

(1+exp(rowSums(cbind(rep(1,nrow(dat)),dat)[1:100,]*coefmat[1:100,])))
y <- c(ydat,exp(rowSums(cbind(rep(1,nrow(dat)),dat)[-c(1:100),c(1,5,6)]*

coefmat[-c(1:100),c(1,5,6)]))/
(1+exp(rowSums(cbind(rep(1,nrow(dat)),dat)[-c(1:100),c(1,5,6)]*

coefmat[-c(1:100),c(1,5,6)]))))
u <- runif (length(y))
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y <- as.numeric (u < y)

# Consider three candidate models
mmat <- matrix(c(1,1,1,1,1,0,0,0,1,1,1,0,1,0,1),3,5, byrow = TRUE)

# Fit model and plot
# autotuning is turned off for this demonstration example
ldma.test <- logistic.dma(dat, y, mmat, lambda = .99, alpha = .99,

autotune = FALSE, initialsamp = 20)
plot(ldma.test)

# Using DMA in a "streaming" mode
modl <- logdma.init(dat[1:20,], y[1:20], mmat)
yhat <- matrix(0, ncol=3, nrow=200)
for(i in 21:200){

# if prediction is desired, use logdma.predict
yhat[i,] <- logdma.predict(modl, dat[i,])
# update
modl <- logdma.update(modl, dat[i,], y[i],

lambda = .99, autotune = FALSE)
}
# the averaging step could be also done within the loop above
ldma.stream <- logdma.average(modl, alpha = .99)
plot(ldma.stream)
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