
Package: snowFT (via r-universe)
September 15, 2024

Title Fault Tolerant Simple Network of Workstations

Version 1.6-1

Date 2023-09-20

Author Hana Sevcikova, A. J. Rossini

Description Extension of the snow package supporting fault tolerant
and reproducible applications, as well as supporting
easy-to-use parallel programming - only one function is needed.
Dynamic cluster size is also available.

Maintainer Hana Sevcikova <hanas@uw.edu>

License GPL (>= 2)

Imports parallel, snow (>= 0.4)

Depends R (>= 3.0-0), rlecuyer

Suggests Rmpi

URL http://www.stat.washington.edu/hana/parallel/snowFT-doc.pdf

Repository https://hanase.r-universe.dev

RemoteUrl https://github.com/hanase/snowft

RemoteRef HEAD

RemoteSha 8b266f6cbf1356fb054d9240717295f26d4bf2ef

Contents

snowFT-package . 2
snowFT-cluster . 3
snowFT-rand . 7
snowFT-startstop . 8

Index 10

1

http://www.stat.washington.edu/hana/parallel/snowFT-doc.pdf

2 snowFT-package

snowFT-package Fault Tolerant Simple Network of Workstations

Description

Extension of the snow package supporting fault tolerant and reproducible applications, dynamic
cluster resizing, as well as supporting easy-to-use parallel programming - only one function is
needed. It supports the MPI and the socket communication layers.

Details

Package: snowFT
Version: 1.6-0
License: GPL

The main function of this package, performParallel, handles all tasks that are necessary for
evaluating a user-defined function in parallel. These include creating a cluster, initializing nodes,
handling a random number generator, processing the given function on the cluster and cleaning up.
In the very basic settings (i.e. when using with the socket layer), no additional software is necessary.
The package can be used on a single multi-processor/core machine, homogeneous cluster, or a
heterogeneous group of computers.

The package supports creating and handling a snow cluster that is:

1. Fault tolerant: The master checks repeatedly for failures in its waiting time and initiates a
failure recovery if needed. (This feature has been implemented for the PVM layer. Unfortu-
nately, the PVM layer had to be switched off due to the rpvm package not being currently
maintained.)

2. Load balanced AND produces reproducible results: one stream of random numbers associated
with one replicate (instead of one stream per node as handled by snow and parallel).

3. Computationally transparent: Currently processed replicates and failed replicates stored into
files. Allows defining a function that is called after each given number of replicates.

4. Dynamically resizeable: The cluster size is stored in a file which is read by the master repeat-
edly. In case of a modification the cluster is updated. (Not available for MPI.)

5. Administration overhead minimized: All administration is managed by the master in its wait-
ing time. (Note that there is a time-overhead for creating and destroying the cluster, as well
as the RNG initialization. Thus, simple operations, such as the example below, will not gain
from running in parallel.)

6. Allows running processes sequentially with the same random numbers as it would in parallel.
Thus, results can be compared between the two modes.

7. Easy to use: All features, including creating the cluster, RNG initialization and clean-up, are
available via one single function - performParallel.

snowFT-cluster 3

Author(s)

Hana Sevcikova, A. J. Rossini

Maintainer: Hana Sevcikova <hanas@uw.edu>

References

http://www.stat.washington.edu/hana/parallel/snowFT-doc.pdf

See Also

performParallel, clusterCall

Examples

Not run:
generates 500 times 1000 normally distributed random numbers on 5 nodes
(all localhost)
res <- performParallel(5, rep(1000, 500), fun = rnorm, cltype = "SOCK")
print(mean(unlist(res)))

View cluster usage
number of physical nodes
P <- parallel::detectCores(logical = FALSE)
t <- snow::snow.time(performParallel(P, rep(1e6, 50),

fun = function(x) median(rnorm(x)), cltype = "SOCK"))
plot(t)

End(Not run)

snowFT-cluster Cluster-Level Functions

Description

Functions that extend the collection of cluster-level functions of the parallel/snow package while
providing additional features, including reproducibility and dynamic cluster resizing. The heart of
the package is the function performParallel.

Usage

performParallel(count, x, fun, initfun = NULL, initexpr = NULL,
export = NULL, exitfun = NULL,
printfun = NULL, printargs = NULL,
printrepl = max(length(x)/10,1),
cltype = getClusterOption("type"),
cluster.args = NULL,
gentype = "RNGstream", seed = sample(1:9999999,6),

4 snowFT-cluster

prngkind = "default", para = 0,
mngtfiles = c(".clustersize",".proc",".proc_fail"),
ft_verbose = FALSE, ...)

clusterApplyFT(cl, x, fun, initfun = NULL, initexpr = NULL,
export = NULL, exitfun = NULL,
printfun = NULL, printargs = NULL,
printrepl = max(length(x)/10,1), gentype = "None",
seed = rep(123456,6), prngkind = "default", para = 0,
mngtfiles = c(".clustersize",".proc",".proc_fail"),
ft_verbose = FALSE, ...)

clusterCallpart(cl, nodes, fun, ...)

clusterEvalQpart(cl, nodes, expr)

printClusterInfo(cl)

Arguments

count Number of cluster nodes. If count=0, the process runs sequentially.

cl Cluster object.

x Vector of values to be passed to function fun. Its length determines how many
times fun is to be called. x[i] is passed to fun (as its first argument) in the i-th
call.

fun Function or character string naming a function.

initfun Function or character string naming a function with no arguments that is to be
called on each node prior to the computation. It is passed to workers using
clusterCall. It can be used for example for loading required libraries or sourc-
ing data files.

initexpr Expression evaluated on workers at the time of node initialization. It corre-
sponds to what would be passed to clusterEvalQ before the computation.
initfun and initexpr can be used for the same purpose, but initexpr does
not need to have a form of a function.

export Character vector naming objects to be exported to workers.

exitfun Function or character string naming a function with no arguments that is to be
called on each node after the computation is completed.

printfun, printargs, printrepl
printfun is a function or character string naming a function that is to be called
on the master node after each printrepl completed replicates, and thus it can
be used for accessing intermediate results. Arguments passed to printfun are:
a list (of length |x|) of results (including the non-finished ones), the number of
finished results, and printargs.

cltype Character string that specifies cluster type (see makeClusterFT). Possible values
are ’MPI’ and ’SOCK’ (’PVM’ is currently not available).

snowFT-cluster 5

cluster.args List of arguments passed to the function makeClusterFT. For the ‘SOCK’ layer,
the most useful argument in this list is names which can contain a vector of
host names, or a list containing specification for each host (see Example in
makeCluster). Due to the dynamic resizing feature, the length of this vector
(or list) does not need to match the size of the cluster - it is used as a pool from
which hosts are taken as they are needed. Another useful argument is outfile,
specifying name of a file to which slave node output is to be directed.

gentype Character string that specifies the type of the random number generator (RNG).
Possible values: "RNGstream" (L’Ecuyer’s RNG), "SPRNG", or "None", see
clusterSetupRNG.FT. If gentype="None", no RNG action is taken.

seed, prngkind, para
Seed, kind and parameters for the RNG (see clusterSetupRNG.FT). Seed can
be an integer or a vector of six integers.

mngtfiles A character vector of length 3 containing names of management files: mngtfiles[1]
for managing the cluster size, mngtfiles[2] for monitoring replicates as they
are processed, mngtfiles[3] for monitoring failed replicates. If any of these
files equals an empty string, the corresponding management actions (i.e. dy-
namic cluster resizing, outputting processed replicates, and cluster repair in case
of failures) are not performed. If the files already exist, their content is over-
written. Note that the cluster repair action was only available for PVM which
is switched off. Furthermore, the dynamic cluster resizing is not available for
MPI.

ft_verbose If TRUE, debugging messages are sent to standard output.

nodes Indices of cluster nodes.

expr Expression to evaluate.

... Additional arguments to pass to function fun.

Details

clusterApplyFT is a version of clusterApplyLB of the parallel/snow package with additional
features, such as results reproducibility, computation transparency and dynamic cluster resizing.
The master process does the management in its waiting time.

The file mngtfiles[1] (which defaults to ‘.clustersize’) is initially written by the master prior to
the computation and it contains a single integer value corresponding to the number of cluster nodes.
The value can be arbitrarily changed by the user (but should remain in the same format). The
master reads the file in its waiting time. If the value in this file is larger than the current cluster size,
new nodes are created and the computation is expanded on them. If on the other hand the value is
smaller, nodes are successively discarded after they finish their current computation. The arguments
initfun, initexpr, export and exitfun in the clusterApplyFT function are only used, if there
are changes in the cluster, i.e. if new nodes are added or if nodes are removed from cluster.

The RNG uses the scheme ’one stream per replicate’, in contrary to ’one stream per node’ used
by clusterApplyLB. Therefore with each replicate, the RNG is reset to the corresponding stream
(identified by the replicate number). Thus, the final results are reproducible regardless of how many
nodes were used.

performParallel is a wrapper function for clusterApplyFT and we recommend using this func-
tion rather than using clusterApplyFT directly. It creates a cluster of count nodes; on all nodes it

6 snowFT-cluster

calls initfun, evaluates initexpr and export, and initializes the RNG. Then it calls clusterApplyFT.
After the computation is finished, it calls exitfun on all nodes and stops the cluster. If count=0,
function fun is invoked sequentially with the same settings (including random numbers) as it would
in parallel. This mode can be used for debugging purposes.

clusterCallpart calls a function fun with identical arguments ... on nodes specified by indices
nodes in the cluster cl and returns a list of the results.

clusterEvalQpart evaluates a literal expression on nodes specified by indices nodes.

printClusterInfo prints out some basic information about the cluster.

Value

clusterApplyFT returns a list of two elements. The first one is a list (of length |x|) of results, the
second one is the (possibly updated) cluster object.

performParallel returns a list of results.

Author(s)

Hana Sevcikova

Examples

Not run:
generates n normally distributed random numbers in r replicates
on p nodes and prints their mean after each r/10 replicate.

printfun <- function(res, n, args = NULL) {
res <- unlist(res)
res <- res[!is.null(res)]
print(paste("mean after:", n, "replicates:", mean(res),

"(from", length(res), "RNs)"))
}

r <- 1000; n <- 100; p <- 5
res <- performParallel(p, rep(n,r), fun = rnorm, seed = 1,

printfun = printfun)

Setting p <- 0 will run the rnorm call above sequentially and
should give exactly the same results
res.seq <- performParallel(0, rep(n,r), fun = rnorm, seed = 1,

printfun = printfun)
identical(res, res.seq)

Example with worker initialization
mean <- 20
sd <- 10
myfun <- function(r) rdnorm(r, mean = mean, sd = sd)

res <- unlist(performParallel(p, rep(1000, 100), fun = myfun, seed = 123,
initexpr = library(extraDistr), export = c("mean", "sd")))

hist(res)

snowFT-rand 7

See example in ?snowFT for plotting cluster usage.

End(Not run)

snowFT-rand Random Number Generation

Description

Initialize independent random number streams to be used in the cluster. It uses the L’Ecuyer’s
random number generator implemented in the rlecuyer package.

Usage

clusterSetupRNG.FT (cl, type = "RNGstream", streamper="replicate", ...)
clusterSetupRNGstreamRepli (cl, seed=rep(12345,6), n, ...)

Arguments

cl Cluster object.

type Type of the RNG. Currently, only "RNGstream" is supported. It initializes the
L’Ecuyer’s RNG.

streamper Mode of the inititalization. Value "node" initializes one random number stream
per node.
Value "replicate" initializes one stream per replicate.

... Arguments passed to the underlying function (see details bellow).

seed A single integer or a vector of six integer values used as seed for the RNG.

n Number of streams to be created. It should correspond to the number of repli-
cates in the computation.

Details

clusterSetupRNG.FT calls one of the following functions, while passing arguments (cl, ...):
For streamper="node", the snow function clusterSetupRNGstream is called; For streamper="replicate",
the function clusterSetupRNGstreamRepli is called. In the latter case, the argument n has to be
given that corresponds to the total number of streams created for the computation. This mode is
used by clusterApplyFT. Note that when using the function performParallel, the user does not
need to initialize the RNG separately, since it is accomplished within the function.

clusterSetupRNGstreamRepli loads the rlecuyer package and on each node it creates n streams.
The streams are named by their ordinal number.

8 snowFT-startstop

Examples

Not run:
Generate 50 independent (normally distributed) random numbers
on 3 nodes using 10 RNG streams
cl <- makeClusterFT(3)
r <- 10
reproducible results
for (i in 1:3) {

clusterSetupRNG.FT(cl, streamper = "replicate", n = r, seed = 123)
cat("\n")
print(unlist(clusterApplyFT(cl, rep(5,r), rnorm, gentype = "RNGstream")[[1]]))

}

non-reproducible results (method used in snow)
for (i in 1:3) {

clusterSetupRNG.FT(cl, streamper = "node", seed = 123)
cat("\n")
print(unlist(clusterApplyFT(cl, rep(5,r), rnorm, gentype = "RNGstream")[[1]]))

}
stopClusterFT(cl)

End(Not run)

snowFT-startstop Starting snowFT Cluster

Description

Functions to start and stop a snowFT cluster and to set default cluster options.

Usage

makeClusterFT(spec, type = getClusterOption("type"),
names = NULL, ft_verbose = FALSE, ...)

stopClusterFT(cl)

Arguments

spec Cluster size.

type Character string that specifies cluster type. "MPI" and "SOCK" are supported
("PVM" is currently not available).

names Used only for the ‘SOCK’ layer. It should be a vector of host names, or a list
containing specification for each host (see Example in makeCluster). Due to
the dynamic resizing feature, the length of this vector (or list) does not need to
match the size of the cluster spec - it is used as a pool from which hosts are
taken as they are needed. If names is NULL, each node is started on ‘localhost’.

snowFT-startstop 9

ft_verbose If TRUE, debugging messages are sent to standard output.

... Cluster option specifications. A useful option is outfile, specifying name of a
file to which slave node output is to be directed.

cl Cluster object.

Details

makeClusterFT starts a cluster of the specified or default type, loads the snowFT library on each
node and returns a reference to the cluster. See makeCluster for more details.

stopClusterFT stops the cluster.

See Also

snow-startstop functions of the snow package.

Examples

Not run:
cl <- makeClusterFT(5, ft_verbose = TRUE)
res <- clusterApplyFT(cl, 1:10, get("+"), y = 3)
stopClusterFT(res[[2]])
print(unlist(res[[1]]))

End(Not run)

Index

∗ package
snowFT-package, 2

∗ programming
snowFT-cluster, 3
snowFT-package, 2
snowFT-rand, 7
snowFT-startstop, 8

clusterApplyFT, 7
clusterApplyFT (snowFT-cluster), 3
clusterCall, 3, 4
clusterCallpart (snowFT-cluster), 3
clusterEvalQ, 4
clusterEvalQpart (snowFT-cluster), 3
clusterSetupRNG.FT, 5
clusterSetupRNG.FT (snowFT-rand), 7
clusterSetupRNGstream, 7
clusterSetupRNGstreamRepli

(snowFT-rand), 7

makeCluster, 5, 8, 9
makeClusterFT, 4, 5
makeClusterFT (snowFT-startstop), 8
makeSOCKclusterFT (snowFT-startstop), 8

performParallel, 2, 3, 7
performParallel (snowFT-cluster), 3
printClusterInfo (snowFT-cluster), 3

snowFT (snowFT-package), 2
snowFT-cluster, 3
snowFT-package, 2
snowFT-rand, 7
snowFT-startstop, 8
stopClusterFT (snowFT-startstop), 8

10

	snowFT-package
	snowFT-cluster
	snowFT-rand
	snowFT-startstop
	Index

